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Coexistence of electron and hole transport in graphene
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When sweeping the carrier concentration in monolayer graphene through the charge neutrality point, the
experimentally measured Hall resistivity shows a smooth zero crossing. Using a two-component model of
coexisting electrons and holes around the charge neutrality point, we unambiguously show that both types of
carriers are simultaneously present. For high magnetic fields up to 30 T the electron and hole concentrations at the
charge neutrality point increase with the degeneracy of the zero-energy Landau level, which implies a quantum
Hall metal state at ν = 0 made up by both electrons and holes.

DOI: 10.1103/PhysRevB.84.115314 PACS number(s): 73.43.−f, 71.70.Di, 73.63.−b

I. INTRODUCTION

The carrier concentration in semiconductors is commonly
measured using the Hall effect based on the Lorentz force
exerted on moving charged particles in a perpendicular
magnetic field.1 In conventional finite-gap semiconductors, the
low-temperature Hall resistivity ρxy directly measures either
the electron or the hole density. However, in compensated
semiconductors, where electrons and holes coexist, the Hall
resistivity is determined by both types of carriers and, in
particular, becomes zero in a fully compensated material.

Graphene is an ideal two-dimensional zero-gap semicon-
ductor with a linear dispersion2 where the electron and hole
concentration at T = 0 go to zero when sweeping the carrier
density through the charge neutrality point (CNP). However,
nonperfect samples with random potential fluctuations will
break up into spatially inhomogeneous conducting electron-
hole puddles3 leaving a finite number of electrons and holes
directly at the CNP.

In this article, we present experimental results on the
Hall resistivity ρxy in graphene around the CNP in magnetic
fields up to 30 T and for temperatures down to 0.5 K. We
demonstrate that the smooth zero crossing of ρxy at the CNP
for all magnetic fields is caused by a finite concentration
of both electrons and holes below and above the CNP with
an equal number of electron and hole states occupied at
the CNP. We show that the measured carrier concentration
increases linearly with the magnetic field, which is related to
the degeneracy of the zero-energy Landau level (LL) shared
equally between electrons and holes.

We have investigated three different graphene devices
made from Kish graphite (sample A) and natural graphite
(samples B and C) with mobilities between μ = 0.8 m2V−1s−1

for sample A and μ = 1 m2V−1s−1 for samples B and C.
Single-layer graphene flakes were deposited on a Si/SiO2

substrate, identified optically4 and patterned using standard
techniques.2,5 The total charge-carrier concentration q in the
graphene films, defined as q ≡ n − p � αVg , can be adjusted

from hole-doped (q < 0) to electron-doped (q > 0) by means
of a back-gate voltage Vg . Here n and p are the carrier
concentrations for electrons and holes, respectively, and α =
7.2 × 1014 m−2V−1 for a 300-nm thick SiO2 gate insulator. In
order to remove surface impurities, all devices were annealed at
440 K prior to the low-temperature measurements. Admixtures
of ρxx to ρxy due to contact misalignment and inhomogeneities
we removed by symmetrization of all traces measured in
positive and negative magnetic fields.

The paper is organized as follows: Section II presents our
experimental results. The first part of Sec. II shows transport
measurements at low magnetic fields where the Hall resistance
is not yet quantized and charge carriers can be considered as
free (mobile). The second part presents data up to 30 T in the
quantum Hall (QH) regime. Section III develops a model for
the density of states in graphene, first applied to our samples
and then we discuss different splitting scenarios of the lowest
Landau level. Concluding remarks are given in the last section.

II. EXPERIMENTAL RESULTS

We first present measurements of Hall resistivity ρxy with
increasing magnetic field in Fig. 1(a) for sample A as a function
of total carrier concentration q for several magnetic fields
at T = 1.3 K. The corresponding back-gate voltage Vg is
displayed on the top axis. For B = 15 T, ρxy exhibits Hall
plateaus quantized to ρxy = ±h/2e2 at filling factors ν = ±2.
For all magnetic fields, the Hall resistance is not diverging at
the CNP when either electron or hole states are depleted. ρxy

rather moves smoothly through zero from the ν = −2 plateau
to the ν = 2 plateau.

In order to accommodate for this simple experimental
observation, we describe the inverse Hall coefficient 1/RH =
B/ρxy with a two-carrier model for electrons and holes as
known for compensated semiconductors6

1

RH

= e(nμn + pμp)2

nμ2
n − pμ2

p

. (1)
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FIG. 1. (Color online) (a) Dependence of ρxy in sample A on the
carrier concentration (bottom axis) or on the back-gate voltage Vg

(top axis) for several magnetic fields at T = 1.3 K. (b) Inverse Hall
coefficient 1/RH as a function of q for B = 2 T. The solid line shows
the expected behavior of a conventional zero-gap semiconductor
where electrons and holes get fully depleted at the CNP.

n and p are the electron and hole concentrations and μe and
μh are the electron and hole mobilities, respectively. In our
graphene samples the measured conductivity as a function of
carrier concentration is symmetric around the CNP and we
can therefore assume the same mobility for both electrons and
holes, μn = μp, and Eq. (1) simplifies to

1

RH

= e(n + p)2

(n − p)
. (2)

It is worth emphasizing that we can apply the two-carrier
model despite the presence of electron-hole puddles, which
would result, for conventional nonrelativistic charge carriers,
in spatial separation and related percolation phenomena in
electron and hole regions. In the two-dimensional case, the
percolation over electron puddles blocks unavoidably the
transport for holes, and vice versa. The case of graphene is
dramatically different. The crucial point is that for graphene the
borders between p and n regions are actually transparent, and
electrons and holes transfer smoothly into each other, which
is referred to as Klein tunneling.7 At specific magic angles
of incidence (including normal incidence) the transmission
probability is 100%. The presence of a magnetic field does not
destroy the Klein tunneling but just shifts the magic angles.8 It
can be assumed that tunneling from one electron puddle to the
other electron puddle always remains possible even for carriers
incident to an oblique angle (the same holds for hole transport).
Thus, even under a nonuniform distribution of electron-hole
puddles, we can apply our two-carrier model to graphene.

Fig. 1(b) shows the inverse Hall coefficient 1/RH as a
function of q for B = 2 T extracted from our measurements.
For high q, 1/RH exhibits a linear increase due to the presence

FIG. 2. (Color online) (a) Low-field Hall resistivity ρxy and
(b) extracted carrier concentration for electrons n and holes p as
a function of total charge q according to Eq. (2) for sample B. Both
types of charge carriers are present for |q| < 2 · 1015 m−2. Inset:
Sketch of the DOS for B = 0 at the CNP.

of either electrons (q > 0) or holes (q < 0). For q → 0,
however, the simultaneous presence of two distinct types of
charge carriers around the CNP immediately becomes visible
as a divergence of 1/RH around the CNP, which in turn implies
that n + p must remain finite.

A. Low magnetic fields

We now present low-field data in Fig. 2 for sample B
measured at 0.5 K and in magnetic fields where the quantum
Hall effect (QHE) is not yet developed. Using Eq. (2) we
extract the individual charge-carrier concentrations n and p

as a function of the total charge density q [see Fig. 2(b)].
Both charge carriers are present above and below the CNP and
the electron (hole) concentration already starts to increase as
the hole (electron) concentration is still decreasing. Precisely
at the CNP, we extract a charge-carrier concentration n(q =
0) = p(q = 0) = 4.2 × 1014 m−2 only weakly dependent on
B for 0 < B < 4 T. Away from the CNP, the system remains
two-component and the minority charge carriers only dis-
appear for |q| > 2 × 1015 m−2. The same analysis for the
other two samples qualitatively yields similar results with
n(q = 0) = p(q = 0) = 7.4 × 1014 m−2 for sample A and
n(q = 0) = p(q = 0) � 5 · 1014 m−2 for sample C. The fact
that the sample with the lowest mobility (sample A) reveals
the highest n(q = 0) qualitatively confirms a scenario of
coexisting electron-hole puddles, where lower mobilities are
generally associated with larger potential fluctuations.

B. Quantum Hall regime

We now turn our attention to measurements in high
magnetic fields. We present experimental data from 5 to 25
T both for longitudinal resistivity ρxx and Hall resistivity ρxy

[see Figs. 3(a) and 3(b)] measured in sample C at T = 4 K.
ρxy is measured from B = 5 T up to 25 T in steps of 5 T.
ρxy is now quantized at ν = ±2 but still shows a smooth zero
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FIG. 3. (Color online) (a) High-field Hall resistivity ρxy and
longitudinal resistivity ρxx of sample C at 4 K for different magnetic
fields. (c) Corresponding charge-carrier concentrations n and p

extracted according to Eq. (2).

crossing from ρxy = −h/2e2 to ρxy = +h/2e2 without any
sign of divergence at the CNP. Consequently, we still find
a finite charge-carrier concentration for electrons and holes
around the CNP as depicted in Fig. 3(c). Therefore, we can
conclude that electrons still contribute to conduction below
E = 0 and holes do so above E = 0. It should be noticed that
in the range of magnetic fields used for the extraction of the
carrier densities, ρxx does not affect ρxy even if we take into
account a small amount of mixing between both signals but
becomes relevant if ρxx starts diverging at the CNP.

In addition, we now observe an increase of n and p

with increasing magnetic field. This field-dependent carrier
concentration around the CNP is elucidated further in Fig. 4

FIG. 4. (Color online) Charge-carrier concentration at the CNP
as a function of magnetic field for all samples (the dashed-dotted line
depicts degeneracy nL).

where we plot the electron concentration at the CNP as a
function of magnetic field for all investigated samples. For
low magnetic fields (B < 5 T), n(q = 0) remains constant and
can be explained by the presence of electron-hole puddles.

For higher magnetic fields, n(q = 0) starts to increase
linearly with B reflecting the B-proportional degeneracy nL

for each of the four sublevels in the zero-energy Landau level
(LL).9,10 Since, at the CNP, half of the possible electron states
and half of the hole states are filled, respectively, we expect
nL electron states and nL hole states occupied per unit area.
Therefore, for comparison, we have also plotted nL in Fig. 4.
Interestingly, we only observe about 30% of the expected
electron and hole concentration nL in our data extracted from
the Hall experiments.

In contrast to low magnetic fields, where the QHE is not yet
developed and all charge carriers can be considered as mobile,
we now have to take into account localized charge carriers
in the tails of the LLs in the quantized regime. This fact is
essentially reflected in Fig. 4, where we extracted the density
for electrons and holes using Eq. (2) from the Hall resistivity,
which only takes free charge carriers into account. To further
support our assumption that about 30% of the charge carriers
are indeed free, we take a look at the broadening of LLs and the
ratio between extended and localized states depending on the
strength of the magnetic field which has been extracted from
temperature-dependent measurements11 and QH plateaus at
high B. Indeed, we observe a good agreement with our findings
that only 30% of the total carrier concentration is measured as
free charge carriers.

III. DENSITY OF STATES MODEL

A. Investigated samples

The above measurements allow us to sketch the density
of states (DOS) for electrons and holes. For B = 0 (see inset
to Fig. 2) the DOS in graphene D(E) = 2|E|/π (h̄v)2 (v is
the Fermi velocity) is smeared out around the CNP due to
the presence of electron-hole puddles. Applying a magnetic
field leads to a quantization of the DOS, shown in Fig. 5(a).
Electrons and holes in the center of the LLs are extended

FIG. 5. (Color online) (a) Four-fold degenerate zeroth LL with
coexisting electrons and holes below and above the CNP [the electron
levels (red) are sketched upward and the hole levels (blue) are
sketched downward]. (b) Smooth zero crossing of the Hall resistance
from ν = −2 to ν = 2.
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FIG. 6. (Color online) Sketched DOS for (a) a QH metal and (b) a
QH insulator if both spin and valley splitting is resolved. (c) Smooth
zero crossing of the Hall resistivity if both charge carriers are present
above and below the CNP and (d) diverging ρxy due to electrons and
holes being separated and residing on different sides of the CNP.

(shaded areas) whereas they are localized in the Landau-level
tails (filled areas). In that picture the LLs N = 0 and N = 1 are
well separated, yielding quantized plateaus in ρxy at ν = ±2
[Fig. 3(a)] when the Fermi energy is situated in the localized
tails of the LLs.

Within this DOS model (see also Ref. 12) we can now
calculate the longitudinal conductivity σxx by means of the
Kubo-Greenwood formalism13,14 and the Hall conductivity σxy

summing up all states below the Fermi energy.15 Including the
presence of electrons and holes above and below the CNP
indeed yields a smooth zero crossing of ρxy as measured in
Fig. 3(a) and modeled in Fig. 5(b).

Our experimental observation of coexisting electrons and
holes around the CNP also has a direct implication on the
nature of the ν = 0 QHE in graphene.16 Neither a gap opening
at the CNP,12 nor a complete lifting of spin and valley
degeneracy, if we assume the spin-first scenario of the zeroth
LL,17 fundamentally change the zero crossing of the Hall
resistance. Our experimental results up to a magnetic field
of 30 T do not exhibit interaction-driven QHE18 due to a larger
disorder confirmed by lower mobility in our samples compared
to Ref. 17. If we calculate σxy and σxx from measured ρxy and
ρxx using standard matrix inversion our samples show the
gap opening in σxx at B = 30 T due to increasing ρxx at the
CNP. Consequently, a small plateau in σxy at the CNP appears
whereas the Hall resistance smoothly crosses through zero.12

B. Splitting scenarios of the lowest Landau level

In samples with lower disorder, spin and valley degenera-
cies are lifted. As demonstrated in Ref. 17, the Hall resistivity
exhibits a smooth zero crossing (with fluctuations) from the
ν = −1 plateau to the ν = 1 plateau with increasing Vg . We

have calculated the DOS assuming that both electrons and
holes exist above and below the CNP [Fig. 6(c)] and find the
smooth zero crossing of the Hall resistivity [see Fig. 6(c)].

Furthermore, we use our DOS model to directly address
the question of whether ν = 0 is a QH metal or a QH
insulator. Measurements of longitudinal resistance have shown
either finite ρxx , even subjected to high magnetic fields (QH
metal),9,10,17,19 or a steep increase in ρxx , attributed to an
insulating ground state.20 The first observation is generally
explained by an insulating bulk and conducting channels at
the sample edges.19 Both scenarios are directly related to the
lifting of degeneracy of the zeroth LL. Whereas in a QH metal
spin splitting is larger than valley splitting, in a QH insulator
the contrary is the case. If spin and valley degeneracy is lifted,
a zero crossing of ρxy is observed if we include the presence of
electrons and holes above and below the CNP [see Figs. 6(a)
and 6(c)]. However, if we separate electrons and holes at the
CNP [see Fig. 6(b)] (valley-first scenario), ρxy diverges [see
Fig. 6(d)]. The divergence of ρxy in the valley-first scenario
beyond filling factor ν = 1 when approaching the CNP has
indeed been recently found in high-mobility graphene devices,
fabricated on a single-crystal boron nitride substrate21 and thus
confirm our DOS model. However, beyond fractional filling
factor ν = 1/3, ρxy starts to decrease strongly and might pass
through zero. This behavior would imply positive and negative
charged composite fermions around the CNP.

IV. CONCLUSION

In conclusion, we have performed measurements of the Hall
resistivity in graphene in a magnetic field up to 30 T. ρxy does
not diverge at the CNP but shows a smooth transition from
electrons to holes. Our analysis based on mixed conduction
at the CNP implies that both electrons and holes exist both
below and above the CNP with as many hole states as electron
states occupied at the CNP. Charge-carrier concentration as
a function of magnetic field is explained as a transition from
transport dominated by electron-hole puddles to a quantized
DOS with increasing B. Taking into account the presence of
both charge carriers above and below the CNP contributes to
a better understanding of the unique nature of electronic states
at the lowest LL in graphene.

Finally, we have to point out that physics around the CNP,
such as the behavior of ρxy from hole-dominated to electron-
dominated transport becomes easier to access with high-
mobility samples even though diverging ρxx directly affects
the extraction of Hall resistivity under realistic experimental
conditions.
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